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Abstract. Body-centred tetragonal (BCT) antiferromagnets are a central topic of both theor- 
etical and experimental research. The H,eisenberg BcTantiferromagnet shows full frustration 
induced by the lattice structure for all physically meaningful values of the exchange 
parameters. A previous analysis of the minimum-energy configuration indicated full frus- 
tration only if no coupling between next-nearest-neighbour planes is present. However, 
the analysis was restricted to a classical helix configuration whereas infinite non-helical 
configurations characterized by an arbitrary angle between the spin at the centre and the 
spins at the corner minimize the classical energy of the model in a substantial part of the 
parameter space. In any case the relevance of quantum fluctuations in solving the infinite 
degeneracy is confirmed. The first quantum correction to the magnon energy spectrum is 
shown to lift the degeneracy of the soft lines which are present in the classical approximation. 

1. Introduction 

Interesting anomalies in the behaviour of Heisenberg models are caused by the lattice 
structure itself. Rhombohedral [ 11 and body-centred tetragonal (BCT) [2] classical anti- 
ferromagnets show full frustration of the minimum-energy configuration. This inter- 
esting scenario was found by looking for helical configurations, but this approach does 
not exhaust all possible spin patterns. Indeed we show that important degrees of freedom 
can be neglected if one considers only helix configurations. Here we focus particularly 
on the BCT antiferromagnet where we find that the angle between the spin at the centre 
and the spins at the corners of the elementary cell is not determined for any meaningful 
exchange coupling. Note that such configurations are not helix configurations. 

A similar result was found by Shender [3] for spin models suitable for describing 
some antiferromagnetic garnets. 

Analysis of the zero-point motion effect is obviously useful. We confirm the con- 
clusion obtained previously [2] (where only helical configurations were taken into 
account) that a particular antiferromagnetic configuration is stabilized by quantum 
fluctuations. Taking the arbitrary angle between the spin sublattices into account does 
not change our previous conclusions [2]. 

Our approach differs from that of Shender [3] because we account for the first 
quantum correction in 1/S to all orders in the inter-sublattice coupling while Shender 
evaluates second-order contribution only. In any case our result agrees substantially 
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with that of Shender as concerns the quantum correction to the ground state. As for 
quantum corrections to the magnon spectrum we find that there is lifting of the degener- 
acy of the soft lines but that the soft modes at the zone centre and at the zone boundary 
are preserved in agreement with Goldstone's non-relativistic theorem proved for heli- 
magnets [4]. 

The paper has the following format: section 2 is devoted to the evaluation of the 
minimum-energy configurations of the BCT antiferromagnet. In section 3 we study 
spin waves in the classical approximation. Section 4 concerns the zero-point motion 
correction of the ground-state energy and of the magnetic moment as well as the 
temperature dependence of the magnetization. Finally, section 5 contains a summary 
and concluding remarks. 

2. Minimum-energy configurations of the BCT antiferromagnet 

Let us consider Nspins localized on the sites of a BCT lattice. We look for configurations 
where the spins at the centre and at the corners make up two helix sublattices, the angle 
6 between the spin at the centre and those at the corners being arbitrary. The exchange 
interactions that we consider are an in-plane nearest-neighbour coupling J1, an inter- 
sublattice next-nearest-neighbour (NNN) couplingJ2 and a third-nearest-neighbour out- 
of-plane couplingJ3 between spins along the c axis. The Hamiltonian of our model reads 

1.63 

where a and b label the two tetragonal interpenetrating sublattices, i runs over the sites 
of each tetragonal sublattice, S, joins site i with the neighbours of the a th  shell. 

We allow for possible helical order of wavevector Q in each sublattice by the intro- 
duction of local spiralling axes as follows: 

and 

Sj(a)  = -,!?;(a) sin(Q * r , )  + $(a)  cos(Q ri) 

$(a )  = S;(a)  cos(Q ri) + $(a )  sin(Q - ri) 
5 S f ( a )  = - s; (a)  

S j (b )  = - S l ( b )  sin(Q r; + 6) + SF(b) cos(Q - ri + 6 )  

Sy(b) = S l ( b )  cos(Q ri + 6 )  + $(b)  sin(Q r; + 6) 

Sf(b) = -$(b). 

We are interested in finding the minimum-energy configurations and low-lying exci- 
tations. To this aim we transform the spin Hamiltonian to the bosonic equivalent one, 
where we retain bilinear contributions only, since this is sufficient to evaluate the zero- 
temperature phase diagram and magnon excitation spectrum in the classical approxi- 
mation ( S +  CO) as well as the leading quantum corrections. The bilinear equivalent 
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where ak and bk are Bose destruction operators of the spin wave of momentum k on the 
a and b sublattices, respectively, and Eo,  A k ,  Bk, ck, Dk are functions of the variational 
parameters Q and 8 given by 

= - J , N S ~  C COS(Q. 6, )  - J ~ N S ~  COS e 2 COS(Q. 6,) - J ~ N S ~  2 COS(Q. 6,) 
61 62 63 

(2.5) 

A k =2J1 s~{cOS(Q.6 1) - $cos(k*61)[ 1 + cos(Q.6 I)]}+ ~ J ~ S C O S ~ ~ C O S ( Q * ~ ~ )  
61 6 2  

+ 2J3S2{cos(Q.S3) - tcos(k-'s3) [l + COS(Q.S~)]} (2.6) 
6 3  

B k =  - J , S x c o s ( k * 6 1 ) [ 1  +cOs(Q*6,)] - J 3 s ~ c O S ( Q . 6 , ) [ 1  -cos(Q.63)] 
61 63 

(2 * 7) 

Ck = - J ~ S  {COS(Q. 6,) [I + cos e COS(Q - s2>l + i sin(k - 6,) sin 6 sin(Q. 6,)) 
62 

(2.8) 

D k  = -J,S {cos(k. 6,) [I - cos e COS(Q. S2)J + i sin(k - 6,) sin e sin(Q 6,)). 
62 

(2.9) 

In a previous communication [2] we assumed that 8 = 0 which oversimplifies the 
problem, because we find that this degree of freedom is crucial at least for classical 
systems. Let us introduce the reduced classical energy 

eo = Eo/2(J1 INS2 = cos Q, + cos Qy 

+ 4j2 cos e cos(tQ,) cos(tQy) cos(tQ,) + j 3  cos Q, (2.10) 

where the in-plane lattice constant and the distance between two NNN layers are assumed 
to be unity (a = c = 1) and j n  = J , /J1 .  The minimum-energy conditions in the classical 
approximation are 

sin(tQ,) [cos(BQ,) + j 2  cos 8 cos(tQ,) cos(lQ,)] = 0 

sin(tQ,)[ j 2  cos 8 cos(tQ,) cos(4Qy) + j 3  cos(tQ,)] = 0 

(2. l l a )  

(2. l lc)  
sin(tQ,) [cos(tQ,) + j 2  cos 8 cos(lQ,) cos(lQ,)] = 0 (2. l lb)  

j 2  sin 8 cos(lQ,) cos(hQ,) cos(lQ,) = 0. (2. l l d )  

If one assumes that 0 = 0, ab initio equations (2.11) reduce to equations ( 4 )  of [2]. Note 
that equations (4a) and (4b )  of [2] contain a misprint: a factor of 2 has to be omitted. 
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Figure 1.Zero-temperature phase diagram of the 
classical BCT antiferromagnet in the jz-j3 plane. 
The angle 6 between the spin at the centre and the 
spin at the corner is arbitrary in the D, and D~ 
phases. 

The zero-temperature phase diagram is shown in figure 1. The phase diagram of the 
BCT antiferromagnet consists of the same six regions as in [2] where the AF and AF1 phases 
are replaced by the new degenerate phases D~ and D2, respectively. The degenerate 
phase D~ is characterized by Q, = Qy = Q, = n and 8 arbirrary. Its reduced energy is 
e D ,  = -2  - j 3 .  Note that the AF configuration in [2] is one of the infinite configurations 
of the D]  configuration corresponding to the choice 8 = 0. 

The degenerate phase D~ is characterized by Q, = Qy = n, Q, = 0 and 8 arbitrary. 
The reduced energy of this phase is e D 2  = -2 + j 3 .  The AF1 phase in [2] is one of the 
infinite configurations of D2 corresponding to 8 = 0. 

Note that for j 3  = 0 there is the inset of a new degeneracy because in that case also 
the z component of the helix wavevector becomes arbitrary. In the D~ and D~ phases 
the a and b sublattices are decoupled while for j 3  = 0 each plane is decoupled from any 
other. The H, F and AF phases are the same as the H, F and A F ~  phases in [2].  

Full frustration caused by the lattice structure and (or) suitable competition of the 
exchange interactions was found in a number of classical Heisenberg models on periodic 
lattices. Localized spins on tetragonal, hexagonal [ 5 ] ,  face-centred cubic and rhombo- 
hedral [ 11 lattices can support disordered configurations in addition to the well known 
collinear or helical ones. In the minimum-energy configuration, spins can explore, with 
zero energy cost, infinite inequivalent configurations that lead to the absence of long- 
range order (LRO) in 3~ Heisenberg models at any finite temperature. These classical 
Heisenberg models behave like liquids even if spins lie on the sites of a perfectly periodic 
lattice. There is no condensation into an ordered spin pattern at any finite temperature 
and the only kind of order that one can see is short ranged. 

The BCT antiferromagnet shows a similar behaviour fori3 = 0 and -1 < j ,  < 1. Note 
that the arbitrary angle between the two antiferromagnetic sublattices for j 3  # 0 does 
not destroy LRO. On the contrary, full frustration appears for J 3  = 0 because in this case 
the magnon dispersion curve showssoftlines that lead to a catastrophically huge number 
of spin deviations. 

Note that the arbitrary angle 8 between the two sublattices of the classical BCT 
antiferromagnet would show itself in the Bragg peak intensity. Indeed the intensity of 
the (2h + 1 , 2 k ,  21) and (2h ,  2k + 1, 21 + 1) peaks is proportional to 1 + cos 8 while 
the intensity of the (2h,  2k + 1,21) and (2h + 1, 2k ,  21 + 1) peaks is proportional to 
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1 - cos 8. For 8 = 0 or 8 = n, one half of the peaks disappear. This scenario occurs for 
a single-domain sample, whereas the simultaneous presence of all values of 8 in multiple- 
domain samples leads to Bragg peaks of equal intensity. These peculiarities are related 
to classical spins so that, in real compounds, elastic scattering profiles as described above 
might appear in an intermediate range of temperatures where the quantum nature of 
the spins is expected to play a minor role. 

3. Classical spin waves in BCT antiferromagnets 

In this section we diagonalize the bilinear bosonic equivalent Hamiltonian (2.4) for 
exchange couplings supporting the D~ configuration, which is suitable for describing the 
high-T, superconductor La2Cu04 [6]. For this choice equations (2.5)-(2.9) become 

Ak = 8 / J 1  Is[l - t j , ( l  - COS k , ) ]  
Bk = 41J1 (s(C0S k ,  + COS k y )  

Ck = 8/J1 JSj2 cos(+k,)[cos(i!k,) cos(#,) cos(lk,) + cos 8 sin(&,) sin(lk,)] 

(3.1) 

(3.2) 

(3.3) 

(3.4) Dk = 8 ( J ,  lSj2 cos(lk,)[cos(~k,) cos(tk,) cos(&,) - cos e sin@,) sin(&,)]. 

To diagonalize the Hamiltonian (2.4) the following Bogoliubov transformation is 
required: 

( Y k  = Ukak + lkalk - mkbk - Ukbtk 

p k  = rkbk + tkbLk - Wkak - skaik 
(3.5) 

( 3 4  

instead of the usual Bogoliubov transformation that involves only two boson operators. 
Equations (3.5) and (3.6) reduce the Hamiltonian (2.4) to the diagonal form 

(3.7) 

and the leading quantum correction AE to the classical ground-state energy is 
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It is interesting to evaluate E;  along the lines (0, 0, k,)  and (n, n, k,) where 

E;  (0, 0, k , )  = 81J1 /Sd/lj3 1(1 -cos k , ) [ l  If: j 2  cos (ik,)] 

E ; ( n , n , k , )  = 81J11Sd/lj31(l-cosk,)[l 5 j 2  cos8cos(4kZ)]. 

(3.14) 

(3.15) 

It is obvious that fori3 = 0 the magnon energy spectrum developssoft lines that disappear 
for j3 f 0 even if soft modes remain at the zone centre (0, 0,O) and at the zone boundary 
(n, n, 0) in agreement with Goldstone's non-relativistic theorem extended to heli- 
magnets [4]. 

4. Quantum and thermal. fluctuations in BCT antiferromagnets 

In this section we look at the effect of quantum fluctuations on the arbitrary angle 6 
between the two antiferromagnetic sublattices we have found in the D2 phase. We 
focus on the D~ phase because the magnetic structure observed in pure La2Cu0, [6] 
corresponds to that D~ configuration with 8 = 0. 

We find that the zero-point motion supports the order that we called A F ~  in [2] since 
it selects the angle 6 = 0. The ground-state energy obtained summing the leading 
quantum contribution to the classical energy is 

E G  = Eo + AE = 2/J1 i N S 2 [ ( - 2  +j3)(1 + 1/S) + A/S] (4.1) 
where 

1 
A = 4j23 j-: clx dy dz i[&+(x, Y, Z> + E - @ ,  Y, z>1 (4.2) 

with 
E y X , Y ,  2) = V(a rf: c1 c2 COS e l2  - (b  * c1 -t c2 COS eli 
a = 1 + 3(1 - cosz) 
6 =  COS x + COS y) 
c1 = j2 cos(4x) cos(by) cos(fz) 
c2 = j 2  sin(4x) sin(4y) cos(lz). 

(4.3) 
(4.4) 
(4.5) 
(4.6) 
(4.7) 

We find that for any j3 6 0 the A F ~  configuration is established because 8 = 0 or 8 = n 
minimizes the zero-point motion energy. This can be seen analytically, by expanding A 
for small j 2  and j3. In particular, fori3 = 0, one obtains 

a l  = -$ Iozi2 1: clx dy V(sin2 x + sin2 y)(cos2 x + cos2 y) = 1.684 105 2 (4.9) 

(sin2 x + sin2 y)'l2 
sin2 x sin2 y = 0.065 062 6. dx dy (cos2 x + cos2 y)3/2 (4.10) 

Equation (4.8) should be compared with equation (14) of [3] where only second-order 
contributions in j2 have been accounted for. 
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We have also evaluated the zero-temperature spin reduction obtained from the mean 

(4.11) 

value of the spin component along the local quantization axis: 

( S : )  = S - AS - A S ( T )  
where 

(4.12) 
1 A k + C k - E L  A k - C k - E k  + 

k 2E: 2E; 

(4.13) 

with 

(aLak) = l /[exp(Ei / k ~  T )  - 11 
Using equations (4.3)-(4.6) the zero-temperature spin reduction (4.12) reduces to 

(PiPk) = l/[exp(E; / k ~  T )  - 11. (4.14) 

a + c l  + c ~ c o s ~ - & E +  a - c l  - c 2 c o s e - E -  + 
4E + 4E - 

(4.15) 

The finite value AS indicates that the zero-temperature coherent fluctuations do not 
destroy LRO. Fori3 = 0 and smallj2 we have 

AS = AJn I-: dx dy dz 
( 2 4  -* -n 

AS = s 1  + (s2 + s3 cos2 O ) j $  

where 

(4.16) 

(4.17) 
1 

s1 = n2 Jon’2 1: dx dy ( -os2 y) 

(3 - 2 cos2 x - 2 cos2 y) cos2 x cos2 y 
= 0.0182 (4.18) 

Let us consider the effect of thermal fluctuations on the LRO within the simple spin- 
wave approximation, For small j 2  and j 3  we may evaluate analytically the temperature 
dependence of the magnetization (4.12) because for a wide range of temperatures one 
has 

(4.20) 

so that the sum over k, and ky in (4.12) may be performed in the long-wavelength limit. 
When this is done, one obtains 

l j 3 (  4 t = k,T/81J11S4 1 

A S ( T ) =  -71 2t d z l n [ l - e x p ( - ; W s i n ( h z ) ) ]  1 

? G o  
(4.21) 

(4.22) 
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Figure 2. Reduced spontaneous magnetization m versus reduced temperature t for selected 

H, experimental data of Budnick et al. [8]. 
valuesof the intra-sublatticeexchangecoupling:- , J j  = 1 0 ~ 4 ~ J ~ ~ ~ - - - , J ~  = lO-'IJ,l; 

It is easily seen that for S = 3, l j3  1 = the magnetization vanishes for tN = 0.12 which 
for 2/J11 = 1300 K (a value suitable for La,Cu04) leads to a Nee1 temperature TN of 
about 310 K. Note that the numericalvalue obtained from the simple spin-wave approach 
should be reliable because of the absence of renormalization of elementary excitations 
observed experimentally [7]. We would like to remark that the magnetization curve 
decreases linearly as shown by equation (4.22) in agreement with y-spin rotation 
measurements by Budnick et a1 [8]. Figure 2 shows the thermal behaviour of the reduced 
spontaneous magnetization m = 1 - AS( T ) / ( S  - AS) versus the reduced temperature 
t = kgT/8/J11Sforj3 = -lop4 (full curve) and forj, = -lo-' (broken curve). 

Note that simple spin-wave theory gives a clear indication of absence of LRO at any 
finite temperature if j 3  = 0. On the contrary, for any j 3  # 0 the logarithmic divergence 
in (4.22) is suppressed so that simple spin-wave theory suggests that any exchange 
coupling along the c axis leads to LRO, whereas LRO is absent when only coupling between 
adjacent planesJ2 is accounted for even if the zero-point motion energy picks a particular 
helix (Q, = Qy = n, Q, = 0) out of the infinite helices which are isoenergetic in 
the classical approximation. However, the absence of LRO at any finite temperature for 
j 3  = 0 seems to be an artefact of the simple spin-wave approximation since the 
disappearance of the soft lines in the spectrum is expected as a consequence of higher- 
order quantum corrections. If so, no catastrophic population numbers related to the 
presence of soft lines are expected and LRO should appear again. Note that the dis- 
appearance of the soft lines in the elementary excitation spectrum as well as the removing 
of the ground-state infinite degeneracy is a necessary condition to have order by quantum 
disorder. 

In the framework of a perturbation expansion in 1/S, the spin-wave spectrum E:  
containing the first-order quantum correction in the AF1 configuration is given by 141 
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Dk = 81J1 Is[l -  COS k, + cos k, )  + 2j2 sin(+k,) sin(&,) cos(ik,) + + l j 3  l(1 - cos k,)] 
(4.25) 

Sk =81J1 IS[1 +l(cosk, +cask,) +2j2sin(lk,)sin(4k,)cos(4k,) +lij3 1(1 -cask,)]. 
(4.26) 

Note that equation (4.23) holds for collinear configurations whereas for helical con- 
figurations further perturbative contributions should be accounted for [4]. We evaluate 
EL along the soft lines of Ek fori3 = 0 and smallj2. We obtain 

where 

1 (cos2 x + cos2 y)”2 
‘0 = 2 jon Ion dx dy (sin2 + s in2  y ) 3 / 2  sin2 x sin2 y = 0.130 125 2. 

?r 
(4.28) 

Equation (4.27) clearly shows that first-order quantum corrections remove soft lines so 
that no divergent occupation numbers are produced at a finite temperature. This seems 
to substantiate the hypothesis of the ordering effect by quantum fluctuations in systems 
that would be fully frustrated in the classical approximation. Such a suggestion [2] was 
advanced to explain the magnetic order in pure La2Cu04, because the ordering due 
to orthorhombic distortion seems insufficient to give a reliable value of the critical 
temperature [9]. Note that the raising of the degeneracy of the soft lines due to quantum 
fluctuations can be as relevant as the raising due to the spin-spin interactionJ3 along the 
c axis as one can see by comparison of equations (3.14) and (3.15) with equation (4.27). 
On the other hand we have shown that a weak interaction lj31 = lo-’ is sufficient to give 
a transition temperature TN = 300 K for parameter values suitable for La2Cu04 and the 
same could be obtained fori3 = 0 taking into account the zero-point motion in the frame 
of the spin-wave theory including the leading quantum corrections into the magnon 
dispersion curve. Indeed for Ij21 = equations (3.14) and (4.27) become, respect- 
ively, 

(4.29) 
(4.30) 

E: (0, 0, k , )  -- 12 Klsin(+k,)l 
E:(O,O, k , )  = 7 Klsin(ik,)l 

where K indicates kelvin. 

5. Conclusions and comments 

We have studied the Heisenberg BCT antiferromagnet in the classical approximation 
evaluating the zero-temperature phase diagram in the parameter space and the spin- 
wave normal modes. The interest in this model is due both to its rich phenomenology 
and to the possible insight into the magnetic properties of physical compounds such as 
La2Cu04 which becomes a high-T, superconductor on suitable doping [6]. 

The present paper substantiates and improves the previous analysis [2] that looked 
at helical configurations only as possible ground-state configurations. Here we take into 
account the possibility of two interpenetrating sublattices whose magnetizations make 
an arbitrary angle 6 .  We find that this is the case for meaningful exchange parameters; 
8 is arbitrary for -1 < j2 < 1. For zero coupling between spins of the same sublattice 
along the c axis ( j 3  = O), the BCT antiferromagnet shows an additional infinite degeneracy 
because the z component of the helix wavevector becomes arbitrary. 
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Evaluation of the elementary excitations allows us to estimate the order parameter 
in the classical approximation that suggests the existence of LRO for anyj3 # 0, whereas 
no LRO is expected if j3 = 0 and T # 0. LRO should be present with j3 = 0 only for T = 0, 
as indicated by a finite value of the spin reduction. 

Quantum contributions are taken into account to leading order of 1/S for the D~ 
phase that reduces to the configuration of pure La2Cu04 when the arbitrary angle 8 
between the two interpenetrating sublattices vanishes. We find that the zero-point 
motion energy forces 8 to vanish for any j 3  s 0. This could be an ordering effect in 
addition to the orthorhombic distortion [9] for La2Cu04. 

The evaluation of the leading quantum correction to the magnon energy seems to 
confirm such a hypothesis, because we find that degeneracies of the soft lines one has in 
the classical approximation for j3 = 0 related to the arbitrary phase relation of spins 
along the c axis are lifted. It is worthwhile noting that this quantum lifting of the 
degeneracy of the soft lines is of the same order of magnitude as the lifting of the typical 
values of j 3 .  
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